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Abstract We consider relaxations for nonconvex quadratically constrained quadratic
programming (QCQP) based on semidefinite programming (SDP) and the reformulation-
linearization technique (RLT). From a theoretical standpoint we show that the addition of a
semidefiniteness condition removes a substantial portion of the feasible region corresponding
to product terms in the RLT relaxation. On test problems we show that the use of SDP and RLT
constraints together can produce bounds that are substantially better than either technique
used alone. For highly symmetric problems we also consider the effect of symmetry-breaking
based on tightened bounds on variables and/or order constraints.

Keywords Semidefinite programming · Reformulation-linearization technique · Quadrat-
ically constrained quadratic programming

AMS Subject Classifications 90C26 · 90C22

1 Introduction

We consider a quadratically constrained quadratic programming problem of the form:

QCQP: max xT Q0x + aT
0 x

s.t. xT Qi x + aT
i x ≤ bi , i ∈ I

xT Qi x + aT
i x = bi , i ∈ E

l ≤ x ≤ u,

where x ∈ �n and I ∪ E = {1, . . . , m}. We assume that −∞ < li < ui < +∞ for each i ,
and the matrices Qi are all symmetric. If −Q0 and Qi , i ∈ I are all positive semidefinite
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and Qi = 0 for i ∈ E , then QCQP is a convex optimization problem. In general however
QCQP is NP-hard. QCQP is a well-studied problem in the global optimization literature
with many applications, frequently arising from Euclidean distance geometry. An example
that has attracted considerable recent attention concerns localizing sensor networks given
distance information [11].

Global optimization methods for QCQP are typically based on convex relaxations of the
problem. In this paper we compare two such relaxations, based on semidefinite programming
(SDP) [14] and the reformulation-linearization technique (RLT) [8]. These two relaxations are
described in the next section. In Sect. 3 we analyze the effect that adding the semidefiniteness
condition has on the feasible region for the three variables in the RLT relaxation corresponding
to product terms induced by two original variables xi , x j . We show that for typical values
of the original variables the semidefiniteness constraint removes a large fraction of this
feasible region. In Sect. 4 we consider computational results on two different classes of
test problems. For nonconvex box-constrained QPs we show that the use of SDP and RLT
constraints together produces bounds that are substantially better than when either technique
is used alone. We also consider SDP and RLT relaxations applied to circle-packing problems
in the plane. These problems are highly symmetric, and we examine the effect of partial
symmetry-breaking based on tightened bounds for subsets of variables. In Sect. 5 we consider
the effect of further symmetry-breaking based on imposing additional order constraints.
Computational results on these problems indicate unexpectedly regular solution values for
the various relaxations, as well as an unexpected relationship between bounds from SDP
relaxations and bounds from RLT relaxations with additional order constraints.

Notation: We use X � 0 to denote that a symmetric matrix X is positive semidefinite. For
n × n matrices X and Y , X • Y denotes the matrix inner product X • Y = ∑n

i, j=1 Xi j Yi j .
We use e to denote a vector with each component equal to one.

2 The SDP and RLT relaxations

Relaxations of QCQP based on SDP and RLT both utilize variables Xi j that replace the
product terms xi x j of the original problem. The relaxations differ in the form of the constraints
that are placed on these new variables. The SDP relaxation is based on the fact that since
X = xxT in the actual solution of QCQP, one can obtain a relaxation of QCQP by imposing
X � xxT instead. The SDP relaxation of QCQP [14] may then be written

SDP: max Q0 • X + aT
0 x

s.t. Qi • X + aT
i x ≤ bi , i ∈ I

Qi • X + aT
i x = bi , i ∈ E

l ≤ x ≤ u, X − xxT � 0.

Moreover it is very well known that the condition X − xxT � 0 is equivalent to

X̃ :=
(

1 xT

x X

)

� 0, (1)

and therefore SDP may be alternatively written in the form

SDP: max Q̃0 • X̃
s.t. Q̃i • X̃ ≤ 0, i ∈ I

Q̃i • X̃ = 0, i ∈ E
l ≤ x ≤ u, X̃ � 0,
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where

Q̃i :=
( −bi ai

T /2
ai/2 Qi

)

.

When the original QCQP is a convex problem (Q0 � 0, Qi � 0 for i ∈ I and Qi = 0 for
i ∈ E), it is straightforward to show that SDP is equivalent to QCQP. If QCQP is nonconvex,
however, SDP may be unbounded even though all of the original variables have finite upper
and lower bounds. This can easily be remedied by adding upper bounds to the diagonal
components of X . For example, it is obvious that Xii ≤ max{l2

i , u2
i }. Better upper bounds

for Xii are obtained as part of the RLT relaxation that we describe below. An approximation
result based on the SDP relaxation for a special case of QCQP (l = −e, u = e, I = ∅,
ai = 0 and Qi diagonal for i = 1, . . . , m) is given in [17].

The RLT relaxation of QCQP is based on using products of upper and lower bound
constraints on the original variables to obtain valid linear inequality constraints on the new
variables Xi j [8]. For two variables xi and x j we have constraints xi − li ≥ 0, ui − xi ≥ 0,
x j − l j ≥ 0, u j − x j ≥ 0. Multiplying each of the constraints involving xi by a constraint
involving x j , and replacing the product term xi x j with the new variable Xi j , we obtain the
constraints

Xi j − li x j − l j xi ≥ −li l j ,

Xi j − ui x j − u j xi ≥ −ui u j ,

Xi j − li x j − u j xi ≤ −li u j ,

Xi j − l j xi − ui x j ≤ −l j ui ,

i, j = 1, . . . , n. Note that these constraints also hold when i = j , in which case the last two
constraints are identical. Moreover the last two constraints are identical for all i, j once the
condition Xi j = X ji is imposed. The resulting relaxation of QCQP can then be written

RLT: max Q0 • X + aT
0 x

s.t. Qi • X + aT
i x ≤ bi , i ∈ I

Qi • X + aT
i x = bi , i ∈ E

X − lxT − xlT ≥ −llT

X − uxT − xuT ≥ −uuT

X − lxT − xuT ≤ −luT

l ≤ x ≤ u, X = X T .

Using the fact that Xi j = X ji , the result is an ordinary linear programming (LP) problem
with n(n +3)/2 variables and a total of m +n(2n +3) constraints. (In fact it is known that the
original bound constraints l ≤ x ≤ u are redundant and could be removed [10, Proposition
1].)

If QCQP contains linear constraints other than the simple bounds (Qi = 0 for some 0 <

i ≤ m), then additional constraints can be imposed on the variables X in the SDP and/or
RLT relaxations. For RLT the standard methodology is to form all possible products of pairs
of linear inequality constraints, including the bound constraints on the variables [10]. If
|{i ∈ I : Qi = 0}| = k this would add an additional 2kn + k(k + 1)/2 linear inequality
constraints to the RLT relaxation. If there are linear equality constraints then it suffices to
consider the constraints on X obtained by multiplying individual equality constraints by each
variable x j [8, Remark 8.1], so if |{i ∈ E : Qi = 0}| = p, a total of pn additional linear
equality constraints would be added to the RLT relaxation. It is also possible to construct
higher-order RLT relaxations corresponding to linearizations of polynomial terms of order
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greater than two [8]. Such relaxations obtain tighter bounds at the expense of a larger number
of variables and constraints. For linear equality constraints the standard approach in forming
SDP relaxations (see for example [16, Remark 13.4.1]) is to add only the “squared" constraints

aT
i x = bi ⇒ aT

i Xai = b2
i .

The treatment of linear inequality constraints in SDP relaxations is less obvious, because
the constraint obtained by “squaring" a linear inequality aT

i x − bi ≥ 0 is already implied
by X̃ � 0. In [2] some theoretical justification is given for generating additional constraints
from linear inequalities by first adding slack variables to obtain equalities and then forming
the squared equality constraints.

3 Adding SDP to RLT

In this section we examine the effect of adding the semidefiniteness condition X � xxT to
the RLT relaxation of QCQP. We will focus on the effect that adding semidefiniteness has
on the feasible values for the product variables Xi j . It is well known that the RLT relaxation
is invariant with respect to an invertible affine transformation of the original variables [8,
Proposition 8.4], and it is easy to show that such an invariance also holds for the SDP
relaxation. As a result we may assume without loss of generality that l = 0, u = e. We will
consider two variables xi , x j , and for convenience assume that i = 1, j = 2. By interchanging
and/or complementing the variables we may further assume that 0 ≤ x1 ≤ x2 ≤ .5. Under
these assumptions the RLT constraints on X11, X22 and X12 become

0 ≤ X11 ≤ x1, (2a)

0 ≤ X22 ≤ x2, (2b)

0 ≤ X12 ≤ x1. (2c)

Next we consider imposing the semidefiniteness condition X − xxT � 0. As described in
the previous section this is equivalent to X̃ � 0, where X̃ is defined as in (1). Restricting
attention to the principal submatrix of X̃ corresponding to x1 and x2, we certainly have

⎛

⎝
1 x1 x2

x1 X11 X12

x2 X12 X22

⎞

⎠ � 0, (3)

and it is straightforward to show that (3) is equivalent to the constraints

X11 ≥ x2
1 , (4a)

X22 ≥ x2
2 , (4b)

X12 ≤ x1x2 +
√

(X11 − x2
1 )(X22 − x2

2 ), (4c)

X12 ≥ x1x2 −
√

(X11 − x2
1 )(X22 − x2

2 ). (4d)

Our goal is to compare, for fixed values of x1 and x2, the three-dimensional feasible regions
for (X11, X22, X12) corresponding to (2) before and after the addition of (4). Assuming
that x1 > 0, x2 > 0 it is clear that adding (4) has no effect on the upper bounds for Xii ,
i = 1, 2 but improves the lower bounds from Xii ≥ 0 to Xii ≥ x2

i . (The use of these convex,
nonlinear constraints to strengthen the RLT relaxation was suggested in [10].) For any values
Xii satisfying x2

i ≤ Xii ≤ xi , i = 1, 2, values of X12 for which (X11, X22, X12) are feasible
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in both (2) and (4) must satisfy (2c) as well as (4c) and (4d). In Fig. 1 we show the resulting
feasible region as a subset of the RLT feasible region (2) for the case x1 = .5, x2 = .5. For
these values it is clear that the bounds (4c) and (4d) dominate the original RLT bounds on
X12 for all values of X11 and X22 that satisfy x2

i ≤ Xii ≤ xi , i = 1, 2. However for more
general values x1, x2 the situation is more complex. For example, in Fig. 2 we illustrate the
case of x1 = .1, x2 = .5. In the next theorem we characterize the three-dimensional volume
of the combined SDP + RLT region for all relevant values of x1, x2.

Fig. 1 RLT versus SDP + RLT
regions, 0 ≤ x ≤ e, x1 = .5,
x2 = .5
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Fig. 2 RLT versus SDP + RLT regions, 0 ≤ x ≤ e, x1 = .1, x2 = .5
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Theorem 1 Suppose that l = 0, u = e, 0 < x1 ≤ x2 ≤ .5. Then the three-dimensional
volume of {(X11, X22, X12)} feasible in (2) is x2

1 x2, and the volume of {(X11, X22, X12)}
feasible in both (2) and (4) is

x2
1 x2 (1 − x2) − 1

9
x3

1

(
6x2

2 − 6x2 + 5
) + 1

3
x3

1

(
(1 − x2)

3 − x3
2

)
ln

(
1 − x2

x2

)

−1

3
x3

1

(
(1 − x2)

3 + x3
2

)
ln

(
1 − x1

x1

)

.

Proof The volume of {(X11, X22, X12)} feasible in (2) is trivial. To compute the volume
of {(X11, X22, X12)} feasible in (2) and (4) it is convenient to consider the regions with
X12 ≤ x1x2 and X12 ≥ x1x2 separately.

Assume that x2
i ≤ Xii ≤ xi , i = 1, 2. It is then easy to compute that the lower bound (4d)

will dominate the lower bound X12 ≥ 0 from (2c) exactly when

X22 ≤ x2
2 X11

X11 − x2
1

. (5)

Since X22 ≤ x2 by assumption, (5) certainly holds if

x2 ≤ x2
2 X11

X11 − x2
1

,

which is equivalent to

X11 ≤ x2
1

1 − x2
. (6)

Note moreover that since by assumption 0 < x1 ≤ .5 and 0 < x2 ≤ .5, we have

x1 + x2 ≤ 1 ⇒ 1 − x2 ≥ x1 ⇒ 1

1 − x2
≤ 1

x1
⇒ x2

1

1 − x2
≤ x1,

so the upper bound on X11 in (6) cannot be greater than the original upper bound X11 ≤ x1

from (2). It follows that the volume of {(X11, X22, X12)} feasible in both (2) and (4) with
X12 ≤ x1x2 is given by

x1∫

x2
1

1−x2

x2∫

x2
2 X11

X11−x2
1

x1x2 d X22 d X11 +
x1∫

x2
1

1−x2

x2
2 X11

X11−x2
1∫

x2
2

(X11 − x2
1 )

1
2 (X22 − x2

2 )
1
2 d X22 d X11

(7)

+

x2
1

1−x2∫

x2
1

x2∫

x2
2

(X11 − x2
1 )

1
2 (X22 − x2

2 )
1
2 d X22 d X11.

A straightforward integration exercise shows that the volume given by (7) is equal to

x2
1 x2

2 (1 − x1 − x2) + 4

9
x3

1 x3
2 − 1

3
x3

1 x3
2 ln

(
1 − x1

x1

1 − x2

x2

)

. (8)
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Fig. 3 Ratio of volume of
SDP + RLT region to RLT region,
0 ≤ x1 ≤ x2 ≤ .5
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The derivation of the volume of {(X11, X22, X12)} feasible in (2) and (4) with X12 ≥ x1x2

is similar and we omit the details. The resulting volume is

x2
1 (1 − x2)

2 (x2 − x1) + 4

9
x3

1 (1 − x2)
3 − 1

3
x3

1 (1 − x2)
3 ln

(
1 − x1

x1

x2

1 − x2

)

, (9)

which is exactly (8) with (1 − x2) substituted for x2 throughout. The proof is completed by
combining (8) and (9). ��

Theorem 1 has several interesting implications. For example, for any 0 < x1 ≤ x2 ≤ .5
one can use the results of the theorem to compute the ratio of the volume of {(X11, X22, X12)}
feasible in both (2) and (4) to the volume of {(X11, X22, X12)} feasible in (2) alone. In Fig. 3
we illustrate this fraction in terms of x2 and the ratio x1/x2. The minimum fraction of 1/9
is achieved at x1 = x2 = .5, as depicted in Fig. 1. The worst-case ratio of 1.0 corresponds
to the limit as x2 → 0, x1/x2 → 0. In Fig. 4 we illustrate {(X11, X22, X12)} feasible in both
(2) and (4) for x1 = .01, x2 = .1; for these values the (SDP + RLT)/RLT volume fraction
is approximately .7923. It should also be noted that for any 0 < x1 ≤ x2 ≤ .5, the point
(X11, X22, X12) = (x2

1 , x2
2 , x1x2) is always in the interior of the RLT feasible region, but is

an extreme point of the SDP + RLT region.
In addition to comparing the volumes of the RLT and SDP + RLT feasible regions for fixed

values of x1 and x2, Theorem 1 can be used to derive the five-dimensional volumes of the
corresponding feasible regions based on the original bounds 0 ≤ xi ≤ 1, i = 1, 2. We give
this result in the following theorem.

Theorem 2 Suppose that 0 ≤ xi ≤ 1, i = 1, 2. Then the volume of {(x1, x2, X11, X22, X12)}
that are feasible for the RLT constraints is 1/60, and the volume of {(x1, x2, X11, X22, X12)}
that are feasible for the RLT constraints and (3) is 1/240.
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Fig. 4 RLT versus SDP + RLT regions, 0 ≤ x ≤ e, x1 = .01, x2 = .1

Proof From Theorem 1, the volume of {(x1, x2, X11, X22, X12)} feasible for the RLT con-
straints, with 0 ≤ x1 ≤ x2 ≤ .5, is

1
2∫

0

x2∫

0

x2
1 x2 dx1dx2,

which is easily computed to be 1/480. To find the corresponding volume of {(x1, x2, X11, X22,

X12)} that also satisfy (3) requires computing

1
2∫

0

x2∫

0

v(x1, x2) dx1dx2,

where v(x1, x2) is the three-dimensional volume given in Theorem 1. Using MapleTM 11
this integral evaluates to equal 1/1920. Moreover the region 0 ≤ x1 ≤ x2 ≤ .5 represents 1/8
of the original feasible region 0 ≤ xi ≤ 1, i = 1, 2, and volumes are invariant with respect to
the transformations (exchanging and/or complementing variables) needed to map any other
(x1, x2) onto this region. ��

The result of Theorem 2 is remarkably simple: adding the semidefiniteness condition (3)
to the RLT relaxation removes exactly 75% of the feasible region determined by two of the
original variables. It must be noted, however, that in general there is no simple relationship
between the volumes of different relaxations and the quality of bounds obtained using them.
Moreover Theorem 2 applies to only two of the n variables in QCQP. The following result,
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proved in [1], shows that no further improvement is possible for a convex relaxation of the
terms corresponding to two of the original variables.

Theorem 3 ([1]) For n = 2 and 0 ≤ x ≤ e, the set of X̃ � 0 such that (x, X) are feasible

for the RLT constraints is equal to the convex hull of {(1
x

)(1
x

)T : 0 ≤ x ≤ e}.

4 Computational results

In this section we compare bounds obtained using the SDP, RLT and SDP + RLT relaxations
on two different classes of test problems. All problems were solved on a 2.8 GHz Pentium 4 PC
with 2 Gb of RAM, using the Matlab-based SeDuMi solver [12] with a feasibility/optimality
tolerance of 1E-8. To begin we consider indefinite box-constrained QPs, corresponding to the
case E = I = ∅ in QCQP. Box-constrained QPs have a number of applications and have been
well-studied in the global optimization literature; see for example [4] and references therein.
In Table 1 we compare the bounds, and relative gaps between bounds and the optimal value,
for a group of test problems from [15]. These problems all have n = 30, 0 ≤ x ≤ e, and were
solved to optimality using a finite branch-and-bound method based on polyhedral bounds
in [15]. (An extension of this method that uses semidefinite relaxations is given in [3].) In
Table 1, PS is the value of the polyhedral bound at the root problem, and BARON is the root
bound obtained by the BARON global optimization package [7] after tightening based on
range reduction (Vandenbussche, private communication, 2005). The columns RLT and SDP
correspond to values obtained by the relaxations RLT and SDP of Sect. 2, and SDP + RLT
corresponds to the problem with both sets of constraints imposed. (The SDP relaxation also
includes the upper bounds on diagonal components Xii ≤ xi .)

Examining Table 1, we conclude that on these problems the bounds from RLT, BARON
and PS are similar, while those from SDP have gaps that are an order of magnitude smaller
and those from SDP + RLT are an order of magnitude smaller again. It is also notable that
the bounds from RLT and BARON are quite close, as one would expect since BARON
is based on the reformulation-linearization technique. (The fact that the BARON bounds
are always somewhat better is consistent with the fact that they are being reported after
tightening based on range reduction.) In terms of computational cost, each RLT or SDP bound
for these problems required approximately 1 second of computation, but each SDP + RLT
bound required over 200 seconds of computation. It is well known that “mixed” SDP/LP
problems involving large numbers of inequality constraints are computionally challenging,
and reducing the work to solve such problems is an area of ongoing algorithmic research.
An alternative approach taken in [9] is to add linear constraints implied by X̃ � 0 to the
RLT relaxation in an effort to obtain stronger bounds without incurring the computational
cost of solving the SDP + RLT problem directly. Computational results in [9] show that this
approach can produce significantly tighter root bounds and substantially reduce the total
computational time in a branch-and-bound algorithm compared to using RLT relaxations
alone. In [5] a similar approach is proposed that adds second-order cone constraints to RLT;
these are stronger than the linear constraints used in [9] but computationally still easier to
handle than the full SDP + RLT problem.

Our second set of test problems are based on circle packing in the plane: for a given n ≥ 2
find the maximum radius of n non-overlapping cicrles that all lie in the unit box 0 ≤ xi ≤ 1,
0 ≤ yi ≤ 1, i = 1, . . . , n. This geometric problem has been extensively studied in the global
optimization literature [6,13]. Via a well-known transformation the problem is equivalent to
the “point packing” problem
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PP: max θ

s.t.
(
xi − x j

)2 + (
yi − y j

)2 ≥ θ, 1 ≤ i < j ≤ n
0 ≤ x ≤ e, 0 ≤ y ≤ e.

Regarding problem PP, note that

• The variable θ represents the minimum squared distance separating n points in the unit
square. The corresponding radius for n circles that can be packed into the unit square is√

θ/[2(1 + √
θ)].

• The problem formulation involves no terms of the form xi y j . As a result, the RLT and
SDP relaxations can be based on matrices X and Y relaxing xxT and yyT , respectively.

• Let nx = �n/2�, ny = �nx/2�. By symmetry one can assume .5 ≤ xi ≤ 1, i = 1, . . . , nx

and .5 ≤ yi ≤ 1, i = 1, . . . , ny . We will use SYM to refer to any problem formulation
that uses these more restricted bounds.

We have solved various relaxations of PP for 2 ≤ n ≤ 50. The solution values for
these relaxations have an unexpectedly simple structure described in Conjecture 4, below.
We present these results as a conjecture since we have obtained the solution values only up
to n ≤ 50, and all values are approximate (but high precision) estimates of the true optimal
values obtained by a numerical solver.

Conjecture 4 For n ≥ 2 consider the RLT and SDP relaxations of PP, where the SDP
relaxation also imposes the diagonal upper bounds Xii ≤ xi , Yii ≤ yi , i = 1, . . . , n. Then:

1. The optimal value for the RLT relaxation is 2.
2. The optimal value for the SDP relaxation is 1 + 1

n−1 and adding the RLT constraints
does not change this value.

3. For n ≥ 5 the optimal value for the RLT+SYM relaxation is 1
2 .

4. For n ≥ 5 the optimal value for the SDP+SYM relaxation is 1
4

(
1 + 1

�(n−1)/4�
)

.

Note that the RLT bound of 2.0 is “worst possible” in that this is the maximum squared
distance between two points in the unit square. In addition, the effect of adding the more
restricted SYM bounds is very similar for both the RLT and SDP relaxations: the solution
value is reduced approximately by a factor of 4. In Fig. 5 we illustrate the various bounds
described in Conjecture 4 for 2 ≤ n ≤ 30. (The SDP + SYM + ORD relaxation is described
in the next section.) Figure 5 gives the square roots of the solution values for the various
relaxations, corresponding to bounds on the minimum distance between two points. The
“MAX” values correspond to high-precision estimates for the exact optimal values of PP
obtained by verified computing techniques [6], available from http://packomania.com. It
is worth noting that while these problems have some similarity with the sensor network
problems considered in [11], the SDP relaxations for PP do not appear to be nearly as tight
as those for the sensor problems. We believe that there are at least two reasons for this
difference. First, the PP problem has a high degree of symmetry which is problematic for
any bound based on convex optimization. Second, the distance information in the sensor
network problems, especially distance information involving fixed anchor points, provides
many additional constraints on components of X̃ that considerably tighten the SDP relaxation.

5 Symmetry-breaking using order constraints

The results in Conjecture 4 show that the more restricted bounds based on symmetry have
a substantial effect on both the SDP and RLT relaxations of PP. In this section we consider
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Fig. 5 Bounds on distance from
relaxations of PP
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a more elaborate symmetry-breaking strategy based on orderings of variables. In particular,
for the variables x and y in PP one could certainly assume that

xi ≥ xi+1, i = 1, . . . , n − 1. (10)

Simply adding (10) to the SDP or RLT relaxations would have no effect, since (10) can be
satisfied by re-ordering the variables in any solution. However (10) can be used to gener-
ate additional linear constraints on the variables (x, X). As described in Sect. 2, the usual
approach in forming RLT relaxations is to generate constraints based on all pairs of linear
inequalities, including the original bound constraints on the variables. In the case of (10)
this would result in an additional O(n2) constraints, which would be computationally very
costly if semidefiniteness of X̃ is also imposed. To reduce the computational burden we will
generate a total of O(n) constraints by using (10) for a given i together with only the bound
constraints on xi and xi+1. It is straightforward to show that the resulting constraints have
the form

Xii − Xi,i+1 + li xi+1 − li xi ≥ 0,

Xii − Xi,i+1 + ui xi+1 − ui xi ≤ 0,

Xi+1,i+1 − Xi,i+1 + ui+1xi − ui+1xi+1 ≥ 0,

Xi+1,i+1 − Xi,i+1 + li+1xi − li+1xi+1 ≤ 0,

i = 1, . . . , n − 1. We will use ORD to denote any relaxation that imposes these additional
constraints. Note that if the more restricted SYM ranges are imposed then the constraint (10)
is not valid for i = ny , but can still be imposed for all other i . In this case we simply omit
the constraints on (x, X) corresponding to i = ny .

We have solved a variety of relaxations of PP using the additional ORD constraints, for
2 ≤ n ≤ 50. The unexpectedly regular behavior of the RLT and SDP relaxations with and
without the SYM restrictions, described in Conjecture 4, becomes even more remarkable
when the ORD constraints are added. These findings are given in Conjecture 5 below. As
with Conjecture 4 we decribe our results as a conjecture since they have only been observed
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up to n ≤ 50, and correspond to high-precision estimates of the true optimal values of the
problems obtained by a numerical solver.

Conjecture 5 For n ≥ 2 consider the RLT and SDP relaxations of PP, where the SDP relax-
ation also imposes the diagonal upper bounds Xii ≤ xi , Yii ≤ yi , i = 1, . . . , n. Then:

1. The optimal value for the RLT+ORD relaxation is equal to that of the SDP relaxation.
2. For n ≥ 5 the optimal value for the RLT+SYM+ORD relaxation is equal to that of the

SDP+SYM relaxation.
3. For n ≥ 9 the optimal value for the SDP+SYM+ORD relaxation is strictly less than the

optimal value of the RLT+SYM+ORD relaxation.

Loosely speaking, Conjecture 5 says that adding the ORD constraints to RLT, with or
without the tightened SYM bounds, has exactly the same effect as using SDP instead. How-
ever the bounds computed by adding the ORD constraints to RLT are cheaper to com-
pute than those based on SDP. For example, for n = 50 the time required to compute the
RLT+SYM+ORD bound was about 36 seconds, compared to 54 seconds for SDP+SYM.
The last part of Conjecture 5 indicates that for n ≥ 9 the best bounds are obtained using
SDP+SYM+ORD. However from Fig. 5 it is clear that the difference between the solution
values for the RLT+SYM+ORD and SDP+SYM+ORD relaxations is relatively small,
and the SDP+SYM+ORD bound is substantially more expensive to compute (for n = 50 the
SDP+ SYM+ORD bound required over 100 seconds to compute). In conclusion, for these
problems a substantial amount of the bound improvement of SDP compared to RLT can be
obtained relatively cheaply by appropriate tightenings of RLT based on problem symmetry.
It is interesting to note that these tightenings of RLT are not based on trying to approximate
the semidefinitess of X̃ using additional linear or convex quadratic constraints, as in [5] and
[9].
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